FOTS: Fast Oriented Text Spotting with a Unified Network

نویسندگان

  • Xuebo Liu
  • Ding Liang
  • Shi Yan
  • Dagui Chen
  • Yu Qiao
  • Junjie Yan
چکیده

Incidental scene text spotting is considered one of the most difficult and valuable challenges in the document analysis community. Most existing methods treat text detection and recognition as separate tasks. In this work, we propose a unified end-to-end trainable Fast Oriented Text Spotting (FOTS) network for simultaneous detection and recognition, sharing computation and visual information among the two complementary tasks. Specially, RoIRotate is introduced to share convolutional features between detection and recognition. Benefiting from convolution sharing strategy, our FOTS has little computation overhead compared to baseline text detection network, and the joint training method learns more generic features to make our method perform better than these two-stage methods. Experiments on ICDAR 2015, ICDAR 2017 MLT, and ICDAR 2013 datasets demonstrate that the proposed method outperforms state-of-the-art methods significantly, which further allows us to develop the first real-time oriented text spotting system which surpasses all previous state-of-theart results by more than 5% on ICDAR 2015 text spotting task while keeping 22.6 fps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TextBoxes++: A Single-Shot Oriented Scene Text Detector

Scene text detection is an important step of scene text recognition system and also a challenging problem. Different from general object detection, the main challenges of scene text detection lie on arbitrary orientations, small sizes, and significantly variant aspect ratios of text in natural images. In this paper, we present an end-to-end trainable fast scene text detector, named TextBoxes++,...

متن کامل

TextBoxes: A Fast Text Detector with a Single Deep Neural Network

This paper presents an end-to-end trainable fast scene text detector, named TextBoxes, which detects scene text with both high accuracy and efficiency in a single network forward pass, involving no post-process except for a standard nonmaximum suppression. TextBoxes outperforms competing methods in terms of text localization accuracy and is much faster, taking only 0.09s per image in a fast imp...

متن کامل

Zone-based Keyword Spotting in Bangla and Devanagari Documents

In this paper we present a word spotting system in text lines for offline Indic scripts such as Bangla (Bengali) and Devanagari. Recently, it was shown that zone-wise recognition method improves the word recognition performance than conventional full word recognition system in Indic scripts [29]. Inspired with this idea we consider the zone segmentation approach and use middle zone information ...

متن کامل

Deep Convolutional Neural Networks for Text Spotting in Natural Images

In this work we investigate and extend the current state-of-the-art system for text spotting in natural images [Jaderberg et al. 2014a]. First, we extend text recognition to be case-sensitive and include special characters and punctuation marks. Next, we improve text recognition at various word-length scales using separate deep convolutional neural networks for different length intervals. Final...

متن کامل

Comparing the Effectiveness of Emotion-Oriented Therapy and the Unified Trans-diagnostic Treatment on Fear of Negative & Positive Evaluation of Patients with Social Anxiety disorder

Objective: Most of the research conducted so far on effective treatments for social anxiety disorder has used traditional cognitive-behavioral therapies. However, recent pathological theories emphasize the role of emotion regulation in the formation and continuation of the symptoms of this disorder. Thus, the study has been conducted to compare the efficacy of emotion- oriented therapy and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.01671  شماره 

صفحات  -

تاریخ انتشار 2018